This post is inspired in part by Inna’s observation that a Josephson junction can act as a DC-AC converter. It turns out that CDWs can also act in a similar manner.

Sometimes I feel like quasi-1D charge density waves (CDWs) are like the lonely neglected child compared to superconductors, the popular, all-star athlete older sibling. Of course this is so because superconductors carry dissipationless current and exhibit perfect diamagnetism. However, quasi-1D CDWs can themselves exhibit pretty stunning transport signatures associated with the CDW condensate. Note that these spectacular properties are associated with *incommensurate* CDWs, as they break the translational symmetry of the crystal.

To make a comparison with superconductivity (even though no likes to be compared to their older sibling), here is a cartoon of the frequency-dependent conductivity (taken from G. Gruner’s Review of Modern Physics entitled Dynamics of Charge Density Waves):

In the superconducting case, there is a delta function at zero frequency, indicative of dissipationless transport. For the CDW, there is also a collective charge transport mode, but in this case it is at finite energy (as it is pinned by impurities), and it is dissipative (indicated by the finite width).

This collective charge transport mode can be “depinned” and results in a nonlinear conductivity known as a sliding CDW. This is evidenced below in the I-V characteristics. Below a threshold electric field/voltage, usual Ohmic characteristics are observed, associated with the “normal” non-condensed electrons. However, above the threshold electric field/voltage the collective mode is depinned and contributes to the I-V characteristics.

Even more amazingly, once this CDW has been depinned, applying a DC field results in an AC response. Below is an image from a famous paper by Fleming and Grimes showing the Fourier transformed AC response with several harmonics. As the voltage is turned up, the fundamental frequency increases markedly (the voltage is highest in (a) and is decreased slowly until (e) where the CDW is no longer sliding).

The observed oscillation frequency is due to the collective mode getting depinned from its impurity site and then getting weakly pinned successively by impurities, though this picture is debated. N.P. Ong, who did some great early work on CDW transport, has noted that the CDW “sings”. A nice cartoon of this idea is presented in the ball-and-egg-crate model shown below. One can imagine the successive “hits in the road” at periodic time intervals resulting in the AC response seen above.

Hopefully this post will help people appreciate more the shy younger sibling that is the charge density wave.

*All images taken from G. Gruner RMP 60, 1129 (1988).*

Every time I see this sort of CDW discussion I take every opportunity I can get to post these much unloved papers by Bunji Sakita that doesn’t get nearly the attention they deserve.

http://dx.doi.org/10.1103/PhysRevB.42.5586

http://dx.doi.org/10.1103/PhysRevLett.56.780

LikeLike

Pingback: Bardeen, CDWs and Macroscopic Quantum Phenomena | This Condensed Life

Pingback: A Matter of Definitions | This Condensed Life