Interactions, Collective Excitations and a Few Examples

Most researchers in our field (and many outside our field that study, e.g. ant colonies, traffic, fish schools, etc.) are acutely aware of the relationship between the microscopic interactions between constituent particles and the incipient collective modes. These can be as mundane as phonons in a solid that arise because of interactions between atoms in the lattice or magnons in an anti-ferromagnet that arise due to spin-spin interactions.

From a theoretical point of view, collective modes can be derived by examining the interparticle interactions. An example is the random phase approximation for an electron gas, which yields the plasmon dispersion (here are some of my own notes on this for those who are interested). In experiment, one usually takes the opposite view where inter-particle interations can be inferred from the collective modes. For instance, the force constants in a solid can often be deduced by studying the phonon spectrum, and the exchange interaction can be backed out by examining the magnon dispersions.

In more exotic states of matter, these collective excitations can get a little bizarre. In a two-band superconductor, for instance, it was shown by Leggett that the two superfluids can oscillate out-of-phase resulting in a novel collective mode, first observed in MgB2 (pdf!) by Blumberg and co-workers. Furthermore, in 2H-NbSe2, there have been claims of an observed Higgs-like excitation which is made visible to Raman spectroscopy through its interaction with the charge density wave amplitude mode (see here and here for instance).

As I mentioned in the post about neutron scattering in the cuprates, a spin resonance mode is often observed below the superconducting transition temperature in unconventional superconductors. This mode has been observed in the cuprate, iron-based and heavy fermion superconducting families (see e.g. here for CeCoIn5), and is not (at least to me!) well-understood. In another rather stunning example, no less than four sub-gap collective modes, which are likely of electronic origin, show up below ~40K in SmB6 (see image below), which is in a class of materials known as Kondo insulators.

smb6

Lastly, in a material class that we are actually thought to understand quite well, Peierls-type quasi-1D charge density wave materials, there is a collective mode that shows up in the far-infrared region that (to my knowledge) has so far eluded theoretical understanding. In this paper on blue bronze, they assume that the mode, which shows up at ~8 cm^{-1} in the energy loss function, is a pinned phase mode, but this assignment is likely incorrect in light of the fact that later microwave measurements demonstrated that the phase mode actually exists at a much lower energy scale (see Fig. 9). This example serves to show that even in material classes we think we understand quite well, there are often lurking unanswered questions.

In materials that we don’t understand very well such as the Kondo insulators and the unconventional superconductors mentioned above, it is therefore imperative to map out the collective modes, as they can yield critical insights into the interactions between constituent particles or couplings between different order parameters. To truly understand what is going on these materials, every peak needs to be identified (especially the ones that show up below Tc!), quantified and understood satisfactorily.

As Lestor Freamon says in The Wire:

All the pieces matter.

Advertisements

One response to “Interactions, Collective Excitations and a Few Examples

  1. Pingback: Ruminations on Raman | This Condensed Life

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s