Origin of the solitary wave

Back in 1834, a Scottish engineer named John Scott Russell noticed a strange kind of wave that propagated away from a boat that had made a sudden stop. He describes how he chased the wave on horseback along the river for about two miles! Here is his account from this manuscript:

“I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped – not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation”.

What he called a “Wave of Translation” is now known as a solitary wave or a soliton. Here is an excellent Youtube video of a solitary wave that has been generated in a lab setting. Remarkably, in the video, when two solitary waves meet, they appear to pass right through one another.

The strange thing about the solitary wave, is that it can propagate for miles at a time without breaking or disappearing, i.e. it is much more stable than the garden-variety (ocean-variety?) wave.

There are two concepts that are necessary to go over in order to understand the solitary wave. These are (i) non-linearity and (ii) dispersion.

Dispersion occurs when the phase velocity and the group velocity of a wave differ. If one forms a Gaussian wavepacket from a dispersive medium, then one would expect the amplitude to decrease and for the wave to broaden over time. You can see this effect occurring for the waves in the boat’s wake in this Youtube video. To those more familiar with quantum mechanics than fluid mechanics (which is usually the case for most physics students!), the same thing happens for a Gaussian wavepacket for an electron wavefunction, but does not occur for a wavepacket of light. It is important to note that this broadening and disappearing can happen in a medium that is not viscous. Viscosity has nothing to do with the dispersion of the water wave nor of the electron.

Non-linearity in water waves, on the other hand, is essentially what causes waves to “break”. The water at larger heights moves at a faster speed than the water at lower heights which results in a multi-valued function. Here is an instructive image which depicts well what I’m trying to get across (taken from here):

Also, here is Youtube video of breaking ocean waves to just soothe your soul.

So why is the solitary wave so stable and what is preventing it from breaking or disappearing? It turns out that the dispersion and non-linearity amazingly cancel each other out in order to sustain the solitary wave and allow it to propagate much further than regular waves.

Feynman said in his Lectures on Physics:

[water waves] that are easily seen by everyone and which are usually used as an example of waves in elementary courses […] are the worst possible example […]; they have all the complications that waves can have.

While this is true, it is these complications that give rise to some startling phenomena, including the solitary wave.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s