Category Archives: Philosophy

Research Topics and the LAQ Method

As a scientific researcher, the toughest part of the job is to come up with good scientific questions. A large part of my time is spent looking for such questions and every once in a while, I happen upon a topic that is worth spending the time to investigate further. The most common method of generating such questions is to come up with a lot of them and then sift through the list to find some that are worth pursuing.

One of the main criteria I use for selecting such questions/problems is what I refer to as the “largest answerable question” or LAQ method. Because the lifetime of a researcher is limited by the human lifespan, it is important to try to answer the largest answerable questions that fall within the window of your ability. Hence, this selection process is actually tied in with one’s self-confidence and actually takes a fair amount of introspection. I imagine the LAQ method looking a little bit like this:

Image result for broad to specific triangle

One starts by asking some really general questions about some scientific topic which eventually proceeds to a more specific, answerable, concrete question. If the question is answerable, it usually will have ramifications that will be broadly felt by many in the community.

I imagine that most readers of this blog will have no trouble coming up with examples of success stories where scientists employed the LAQ method. Just about every famous scientist you can think of has probably, at least to some extent, used this method fruitfully. However, there are counterexamples as well, where important questions are asked by one scientist, but is answered by others.

I am almost done reading Erwin Schrodinger’s book What is Life?, which was written in 1943. In it, Schrodinger asks deep questions about genetics and attempts to put physical constraints on information-carrying molecules (DNA was not known at the time to be the site of genetic information). It is an entertaining read in two regards. Firstly, Schrodinger, at the time of writing, introduces to physicists some of the most pertinent and probing questions in genetics. The book was, after all, one that was read by both Watson and Crick before they set about discovering the structure of DNA. Secondly, and more interestingly, Schrodinger gets almost everything he tries to answer wrong! For instance, he suggests that quantum mechanics may play a role in causing a mutation of certain genes. This is not to say that his reasoning was not sound, but at the time of writing, there were just not enough experimental constraints on some of the assumptions he made.

Nonetheless, I applaud Schrodinger for writing the book and exposing his ignorance. Even though he was not able to answer many of the questions himself, he was an inspiration to many others who eventually were able to shed light on many of the questions posed in the book. Here is an example where the LAQ method fails, but still pushes science forward in a tangible way.

What are your strategies with coming up with good research questions? I have to admit that while the LAQ method is useful, I sometimes pursue problems purely because I find them stunning and no other reason is needed!

Discovery vs. Q&A Experiments

When one looks through the history of condensed matter experiment, it is strange to see how many times discoveries were made in a serendipitous fashion (see here for instance). I would argue that most groundbreaking findings were unanticipated. The discoveries of superconductivity by Onnes, the Meissner effect, superfluidity in He-4, cuprate (and high temperature) superconductivity, the quantum Hall effect and the fractional quantum Hall effect were all unforeseen by the very experimentalists that were conducting the experiments! Theorists also did not anticipate these results. Of course, a whole slew of phases and effects were theoretically predicted and then experimentally observed as well, such as Bose-Einstein condensation, the Kosterlitz-Thouless transition, superfluidity in He-3 and the discovery of topological insulators, not to diminish the role of prediction.

For the condensed matter experimentalist, though, this presents a rather strange paradigm.  Naively (and I would say that the general public by and large shares this view), science is perceived as working within a question and answer framework. You pose a concrete question, and then conduct and experiment to try to answer said question. In condensed matter physics, this often not the case, or at least only loosely the case. There are of course experiments that have been conducted to answer concrete questions — and when they are conducted, they usually end up being beautiful experiments (see here for example). But these kinds of experiments can only be conducted when a field reaches a point where concrete questions can be formulated. For exploratory studies, the questions are often not even clear. I would, therefore, consider these kinds of Q&A experiments to be the exception to the rule rather than the norm.

More often then not, discoveries are made by exploring uncharted territory, entering a space others have not explored before, and tempting fate. Questions are often not concrete but posed in the form, “What if I do this…?”. I know that this makes condensed matter physics sound like it lacks organization, clarity and structure. But this is not totally untrue. Most progress in the history of science did not proceed in a straight line like textbooks make it seem. When weird particles were popping up all over the place in particle physics in the 1930s and 40s, it was hard to see any organizing principles. Experimentalists were discovering new particles at a rate with which theory could not keep up. Only after a large number of particles had been discovered did Gell-Mann come up with his “Eightfold Way”, which ultimately led to the Standard Model.

This is all to say that scientific progress is tortuous, thought processes of scientists are highly nonlinear, and there is a lot of intuition required in deciding what problems to solve or what space is worth exploring. In condensed matter experiment, it is therefore important to keep pushing boundaries of what has been done before, explore, and do something unique in hope of finding something new!

Exposure to a wide variety of observations and methods is required to choose what boundaries to push and where to spend one’s time exploring. This is what makes diversity and avoiding “herd thinking” important to the scientific endeavor. Exploratory science without concrete questions makes some (especially younger graduate students) feel uncomfortable, since there is always the fear of finding nothing! This means that condensed matter physics, despite its tremendous progress over the last few decades, where certain general organizing principles have been identified, is still somewhat of a “wild west” in terms of science. But it is precisely this lack of structure that makes it particularly exciting — there are still plenty of rocks that need overturning, and it’s hard to foresee what is going to be found underneath them.

In experimental science, questions are important to formulate — but the adventure towards the answer usually ends up being more important than the answer itself.

Fractional quasiparticles and reality

As a condensed matter physicist, one of the central themes that one must become accustomed to is the idea of a quasiparticle. These quasiparticles are not particles as nature made them per se, but only exist inside matter. (Yes, nature made matter too, and therefore quasiparticles as well, but come on — you know what I mean!)

Probably the first formulation of a quasiparticle was in Einstein’s theory of specific heat in a solid at low temperature. He postulated that the sound vibrations in a solid, much like photons from a blackbody, obeyed the Planck distribution, implying some sort of particulate nature to sound. This introduction was quite indirect, and the first really explicit formulation of quasiparticles was presented by Landau in his theory of He4. Here, he proposed that most physical observables could be described in terms of “phonons” and “rotons“, quantized sound vibrations at low and high momenta respectively.

In solid state physics, one of the most common quasiparticles is the hole; in the study of magnetism it is the magnon, in semiconductor physics, the exciton is ubiquitous and there are many other examples as well. So let me ask a seemingly benign question: are these quasiparticles real (i.e. are they real particles)?

In my experience in the condensed matter community, I suspect that most would answer in the affirmative, and if not, at least claim that the particles observed in condensed matter are just as real as any particle observed in particle physics.

Part of the reason I bring this issue up is because of concerns raised soon following the discovery of the fractional quantum Hall effect (FQHE). When the theory of the FQHE was formulated by Laughlin, it was thought that his formulation of quasiparticles of charge e/3 may have been a mere oddity in the mathematical description of the FQHE. Do these particles carrying e/3 current actually exist or is this just a convenient mathematical description?

In two papers that appeared almost concurrently, linked here and here, it was shown using quantum shot noise experiments that these e/3 particles did indeed exist. Briefly, quantum shot noise arises because of the discrete nature of particles and enables one to measure the charge of a current-carrying particle to a pretty good degree of accuracy. In comparing their results to the models of particles carrying charge e versus particles carrying charge e/3, the data shows no contest. Here is a plot below showing this result quite emphatically:

FracCharge.PNG

One may then pose the question: is there a true distinction between what really “exists out there” versus a theory that conveniently describes and predicts nature? Is the physicist’s job complete once the equations have been written down (i.e should he/she not care about questions like “are these fractional charges real”)?

These are tough questions to answer, and are largely personal, but I lean towards answering ‘yes’ to the former and ‘no’ to the latter. I would contend that the quantum shot noise experiments outlined above wouldn’t have even been conducted if the questions posed above were not serious considerations. While asking if something is real may not always be answerable, when it is, it usually results in a deepened understanding.

This discussion reminds me of an (8-year old!) YouTube video of David who, following oral surgery to remove a tooth, still feels the affects of anesthesia :

Consistency in the Hierarchy

When writing on this blog, I try to share nuggets here and there of phenomena, experiments, sociological observations and other peoples’ opinions I find illuminating. Unfortunately, this format can leave readers wanting when it comes to some sort of coherent message. Precisely because of this, I would like to revisit a few blog posts I’ve written in the past and highlight the common vein running through them.

Condensed matter physicists of the last couple generations have grown up ingrained with the idea that “More is Different”, a concept first coherently put forth by P. W. Anderson and carried further by others. Most discussions of these ideas tend to concentrate on the notion that there is a hierarchy of disciplines where each discipline is not logically dependent on the one beneath it. For instance, in solid state physics, we do not need to start out at the level of quarks and build up from there to obtain many properties of matter. More profoundly, one can observe phenomena which distinctly arise in the context of condensed matter physics, such as superconductivity, the quantum Hall effect and ferromagnetism that one wouldn’t necessarily predict by just studying particle physics.

While I have no objection to these claims (and actually agree with them quite strongly), it seems to me that one rather (almost trivial) fact is infrequently mentioned when these concepts are discussed. That is the role of consistency.

While it is true that one does not necessarily require the lower level theory to describe the theories at the higher level, these theories do need to be consistent with each other. This is why, after the publication of BCS theory, there were a slew of theoretical papers that tried to come to terms with various aspects of the theory (such as the approximation of particle number non-conservation and features associated with gauge invariance (pdf!)).

This requirement of consistency is what makes concepts like the Bohr-van Leeuwen theorem and Gibbs paradox so important. They bridge two levels of the “More is Different” hierarchy, exposing inconsistencies between the higher level theory (classical mechanics) and the lower level (the micro realm).

In the case of the Bohr-van Leeuwen theorem, it shows that classical mechanics, when applied to the microscopic scale, is not consistent with the observation of ferromagnetism. In the Gibbs paradox case, classical mechanics, when not taking into consideration particle indistinguishability (a quantum mechanical concept), is inconsistent with the idea the entropy must remain the same when dividing a gas tank into two equal partitions.

Today, we have the issue that ideas from the micro realm (quantum mechanics) appear to be inconsistent with our ideas on the macroscopic scale. This is why matter interference experiments are still carried out in the present time. It is imperative to know why it is possible for a C60 molecule (or a 10,000 amu molecule) to be described with a single wavefunction in a Schrodinger-like scheme, whereas this seems implausible for, say, a cat. There does again appear to be some inconsistency here, though there are some (but no consensus) frameworks, like decoherence, to get around this. I also can’t help but mention that non-locality, à la Bell, also seems totally at odds with one’s intuition on the macro-scale.

What I want to stress is that the inconsistency theorems (or paradoxes) contained seeds of some of the most important theoretical advances in physics. This is itself not a radical concept, but it often gets neglected when a generation grows up with a deep-rooted “More is Different” scientific outlook. We sometimes forget to look for concepts that bridge disparate levels of the hierarchy and subsequently look for inconsistencies between them.

Kapitza-Dirac Effect

We are all familiar with the fact that light can diffract from two (or multiple) slits in a Young-type experiment. After the advent of quantum mechanics and de Broglie’s wave description of matter, it was shown by Davisson and Germer that electrons could be diffracted by a crystal. In 1927, P. Kapitza and P. Dirac proposed that it should in principle be possible for electrons to be diffracted by standing waves of light, in effect using light as a diffraction grating.

In this scheme, the electrons would interact with light through the ponderomotive potential. If you’re not familiar with the ponderomotive potential, you wouldn’t be the only one — this is something I was totally ignorant of until reading about the Kapitza-Dirac effect. In 1995, Anton Zeilinger and co-workers were able to demonstrate the Kapitza-Dirac effect with atoms, obtaining a beautiful diffraction pattern in the process which you can take a look at in this paper. It probably took so long for this effect to be observed because it required the use of high-powered lasers.

Later, in 2001, this experiment was pushed a little further and an electron-beam was used to demonstrate the effect (as opposed to atoms), as Dirac and Kapitza originally proposed. Indeed, again a diffraction pattern was observed. The article is linked here and I reproduce the main result below:

dirac-kaptiza

(Top) The interference pattern observed in the presence of a standing light wave. (Bottom) The profile of the electron beam in the absence of the light wave.

Even though this experiment is conceptually quite simple, these basic quantum phenomena still manage to elicit awe (at least from me!).

Bohr-van Leeuwen Theorem and Micro/Macro Disconnect

A couple weeks ago, I wrote a post about the Gibbs paradox and how it represented a case where, if particle indistinguishability was not taken into account, led to some bizarre consequences on the macroscopic scale. In particular, it suggested that entropy should increase when partitioning a monatomic gas into two volumes. This paradox therefore contained within it the seeds of quantum mechanics (through particle indistinguishability), unbeknownst to Gibbs and his contemporaries.

Another historic case where a logical disconnect between the micro- and macroscale arose was in the context of the Bohr-van Leeuwen theorem. Colloquially, the theorem says that magnetism of any form (ferro-, dia-, paramagnetism, etc.) cannot exist within the realm of classical mechanics in equilibrium. It is quite easy to prove actually, so I’ll quickly sketch the main ideas. Firstly, the Hamiltonian with any electromagnetic field can be written in the form:

H = \sum_i \frac{1}{2m_i}(\textbf{p}_i - e\textbf{A}_i)^2 + U_i(\textbf{r}_i)

Now, because the classical partition function is of the form:

Z \propto \int_{-\infty}^\infty d^3\textbf{r}_1...d^3\textbf{r}_N\int_{-\infty}^\infty d^3\textbf{p}_1...d^3\textbf{p}_N e^{-\beta\sum_i \frac{1}{2m_i}(\textbf{p}_i - e\textbf{A}_i)^2 + U_i(\textbf{r}_i)}

we can just make the substitution:

\textbf{p}'_i = \textbf{p}_i - e\textbf{A}_i

without having to change the limits of the integral. Therefore, with this substitution, the partition function ends up looking like one without the presence of the vector potential (i.e. the partition function is independent of the vector potential and therefore cannot exhibit any magnetism!).

This theorem suggests, like in the Gibbs paradox case, that there is a logical inconsistency when one tries to apply macroscale physics (classical mechanics) to the microscale and attempts to build up from there (by applying statistical mechanics). The impressive thing about this kind of reasoning is that it requires little experimental input but nonetheless exhibits far-reaching consequences regarding a prevailing paradigm (in this case, classical mechanics).

Since the quantum mechanical revolution, it seems like we have the opposite problem, however. Quantum mechanics resolves both the Gibbs paradox and the Bohr-van Leeuwen theorem, but presents us with issues when we try to apply the microscale ideas to the macroscale!

What I mean is that while quantum mechanics is the rule of law on the microscale, we arrive at problems like the Schrodinger cat when we try to apply such reasoning on the macroscale. Furthermore, Bell’s theorem seems to disappear when we look at the world on the macroscale. One wonders whether such ideas, similar to the Gibbs paradox and the Bohr-van Leeuwen theorem, are subtle precursors suggesting where the limits of quantum mechanics may actually lie.

On Science and Meaning

The history of science has provided strong evidence to suggest that the humanity’s place in the universe is not very special. We have not existed for very long in the history of the universe, we are not at the center of the universe and we likely will not exist in the future of the universe. This kind of sentiment can seem depressing to some, as can be seen in the response to the video made by Neil DeGrasse Tyson and MinutePhysics:

It appears that such ideas can make human life and our actions here on earth (and beyond) seem rather meaningless. As I have referenced in a previous post, this can especially be true for graduate students! However, on a more serious note, I would contend the exact opposite.

Because life on earth is so fragile and transient and only exists in some far-flung corner on the universe, the best thing we can hope to do as humans is celebrate our existence through acts of exploration, beauty, creation, truth and acts that enrich the lives of others and our environment.

When working in the lab or on a calculation that requires attention to small details, this larger context is often forgotten. To my mind, it is important not to lose sight of the basic reason why we are there in the first place, which is all too easy to do. The universe can seem meaningless, but not so when she lets us peer into her depths, usually revealing order of spectacular beauty.

I apologize if this post comes off as a little preachy or pretentious– I suspect I am really the one that needed this pep talk.