Tag Archives: Mott Insulators

Mott Switches and Resistive RAMs

Over the past few years, there have been some interesting developments concerning narrow gap correlated insulators. In particular, it has been found that it is particularly easy to induce an insulator to metal transition (in the very least, one can say that the resistivity changes by a few orders of magnitude!) in materials such as VO2, GaTa4Se8 and NiS2-xSx with an electric field. There appears to be a threshold electric field above which the material turns into a metal. Here is a plot demonstrating this rather interesting phenomenon in Ca2RuO4, taken from this paper:

Ca2RuO4_Switch.PNG

It can be seen that the transition is hysteretic, thereby indicating that the insulator-metal transition as a function of field is first-order. It turns out that in most of the materials in which this kind of behavior is observed, there usually exists an insulator-metal transition as a function of temperature and pressure as well. Therefore, in cases such as in (V1-xCrx)2O3, it is likely that the electric field induced insulator-metal transition is caused by Joule heating. However, there are several other cases where it seems like Joule heating is likely not the culprit causing the transition.

While Zener breakdown has been put forth as a possible mechanism causing this transition when Joule heating has been ruled out, back-of-the-envelope calculations suggest that the electric field required to cause a Zener-type breakdown would be several orders of magnitude larger than that observed in these correlated insulators.

On the experimental side, things get even more interesting when applying pulsed electric fields. While the insulator-metal transition observed is usually hysteretic, as shown in the plot above, in some of these correlated insulators, electrical pulses can maintain the metallic state. What I mean is that when certain pulse profiles are applied to the material, it gets stuck in a metastable metallic state. This means that even when the applied voltage is turned off, the material remains a metal! This is shown here for instance for a 30 microsecond / 120V 7-pulse train with each pulse applied every 200 microseconds to GaV4S8 (taken from this paper):

GaVa4S8.PNG

Electric field pulses applied to GaV4S8. A single pulse induces a insulator-metal transition, but reverts back to the insulating state after the pulse disappears. A pulse train induces a transition to a metastable metallic state.

Now, if your thought process is similar to mine, you would be wondering if applying another voltage pulse would switch the material back to an insulator. The answer is that with a specific pulse profile this is possible. In the same paper as the one above, the authors apply a series of 500 microsecond pulses (up to 20V) to the same sample, and they don’t see any change. However, the application of a 12V/2ms pulse does indeed reset the sample back to (almost) its original state. In the paper, the authors attribute the need for a longer pulse to Joule heating, enabling the sample to revert back to the insulating state. Here is the image showing the data for the metastable-metal/insulator transition (taken from the same paper):

gava4s8_reset

So, at the moment, it seems like the mechanism causing this transition is not very well understood (at least I don’t understand it very well!). It is thought that there are filamentary channels between the contacts causing the insulator-metal transition. However, STM has revealed the existence of granular metallic islands in GaTa4S8. The STM results, of course, should be taken with a grain of salt since STM is surface sensitive and something different might be happening in the bulk. Anyway, some hypotheses have been put forth to figure out what is going on microscopically in these materials. Here is a recent theoretical paper putting forth a plausible explanation for some of the observed phenomena.

Before concluding, I would just like to point out that the relatively recent (and remarkable) results on the hidden metallic state in TaS2 (see here as well), which again is a Mott-like insulator in the low temperature state, is likely related to the phenomena in the other materials. The relationship between the “hidden state” in TaS2 and the switching in the other insulators discussed here seems to not have been recognized in the literature.

Anyway, I heartily recommend reading this review article to gain more insight into these topics for those who are interested.