Tag Archives: Review

An Excellent Intro To Physical Science

On a recent plane ride, I was able to catch an episode of the new PBS series Genius by Stephen Hawking. I was surprised by the quality of the show and in particular, its emphasis on experiment. Usually, shows like this fall into the trap of giving one the facts (or speculations) without an adequate explanation of how scientists come to such conclusions. However, this one is a little different and there is a large emphasis on experiment, which, at least to me, is much more inspirational.

Here is the episode I watched on the plane:

Nonlinear Response and Harmonics

Because we are so often solving problems in quantum mechanics, it is sometimes easy to forget that certain effects also show up in classical physics and are not “mysterious quantum phenomena”. One of these is the problem of avoided crossings or level repulsion, which can be much more easily understood in the classical realm. I would argue that the Fano resonance also represents a case where a classical model is more helpful in grasping the main idea. Perhaps not too surprisingly, a variant of the classical harmonic oscillator problem is used to illustrate the respective concepts in both cases.

There is also another cute example that illustrates why overtones of the natural harmonic frequency components result when subject to slightly nonlinear oscillations. The solution to this problem therefore shows why harmonic distortions often affect speakers; sometimes speakers emit frequencies not present in the original electrical signal. Furthermore, it shows why second harmonic generation can result when intense light is incident on a material.

First, imagine a perfectly harmonic oscillator with a potential of the form V(x) = \frac{1}{2} kx^2. We know that such an oscillator, if displaced from its original position, will result in oscillations at the natural frequency of the oscillator \omega_o = \sqrt{k/m} with the position varying as x(t) = A \textrm{cos}(\omega_o t + \phi). The potential and the position of the oscillator as a function of time are shown below:

harmpotentialrepsonse

(Left) Harmonic potential as a function of position. (Right) Variation of the position of the oscillator with time

Now imagine that in addition to the harmonic part of the potential, we also have a small additional component such that V(x) = \frac{1}{2} kx^2 + \frac{1}{3}\epsilon x^3, so that the potential now looks like so:

nonlinearharm

The equation of motion is now nonlinear:

\ddot{x} = -c_1x - c_2x^2

where c_1 and c_2 are constants. It is easy to see that if the amplitude of oscillations is small enough, there will be very little difference between this case and the case of the perfectly harmonic potential.

However, if the amplitude of the oscillations gets a little larger, there will clearly be deviations from the pure sinusoid. So then what does the position of the oscillator look like as a function of time? Perhaps not too surprisingly, considering the title, is that not only are there oscillations at \omega_0, but there is also an introduction of a harmonic component with 2\omega_o.

While the differential equation can’t be solved exactly without resorting to numerical methods, that the harmonic component is introduced can be seen within the framework of perturbation theory. In this context, all we need to do is plug the solution to the simple harmonic oscillator, x(t) = A\textrm{cos}(\omega_0t +\phi) into the nonlinear equation above. If we do this, the last term becomes:

-c_2A^2\textrm{cos}^2(\omega_0t+\phi) = -c_2 \frac{A^2}{2}(1 + \textrm{cos}(2\omega_0t+2\phi)),

showing that we get oscillatory components at twice the natural frequency. Although this explanation is a little crude — one can already start to see why nonlinearity often leads to higher frequency harmonics.

With respect to optical second harmonic generation, there is also one important ingredient that should not be overlooked in this simplified model. This is the fact that frequency doubling is possible only when there is an x^3 component in the potential. This means that the potential needs to be inversion asymmetric. Indeed, second harmonic generation is only possible in inversion asymmetric materials (which is why ferroelectric materials are often used to produce second harmonic optical signals).

Because of its conceptual simplicity, it is often helpful to think about physical problems in terms of the classical harmonic oscillator. It would be interesting to count how many Nobel Prizes have been given out for problems that have been reduced to some variant of the harmonic oscillator!

Electron-Hole Droplets

While some condensed matter physicists have moved on from studying semiconductors and consider them “boring”, there are consistently surprises from the semiconductor community that suggest the opposite. Most notably, the integral and fractional quantum Hall effect were not only unexpected, but (especially the FQHE) have changed the way we think about matter. The development of semiconductor quantum wells and superlattices have played a large role furthering the physics of semiconductors and have been central to the efforts in observing Bloch oscillations, the quantum spin Hall effect and exciton condensation in quantum hall bilayers among many other discoveries.

However, there was one development that apparently did not need much of a technological advancement in semiconductor processing — it was simply just overlooked. This was the discovery of electron-hole droplets in the late 60s and early 70s in crystalline germanium and silicon. A lot of work on this topic was done in the Soviet Union on both the theoretical and experiment fronts, but because of this, finding the relevant papers online are quite difficult! An excellent review on the topic was written by L. Keldysh, who also did a lot of theoretical work on electron-hole droplets and was probably the first to recognize them for what they were.

Before continuing, let me just emphasize, that when I say electron-hole droplet, I literally mean something quite akin to water droplets in a fog, for instance. In a semiconductor, the exciton gas condenses into a mist-like substance with electron-hole droplets surrounded by a gas of free excitons. This is possible in a semiconductor because the time it takes for the electron-hole recombination is orders of magnitude longer than the time it takes to undergo the transition to the electron-hole droplet phase. Therefore, the droplet can be treated as if it is in thermal equilibrium, although it is clearly a non-equilibrium state of matter. Recombination takes longer in an indirect gap semiconductor, which is why silicon and germanium were used for these experiments.

A bit of history: The field got started in 1968 when Asnin, Rogachev and Ryvkin in the Soviet Union observed a jump in the photoconductivity in germanium at low temperature when excited above a certain threshold radiation (i.e. when the density of excitons exceeded \sim 10^{16}  \textrm{cm}^{-3}). The interpretation of this observation as an electron-hole droplet was put on firm footing when a broad luminescence peak was observed by Pokrovski and Svistunova below the exciton line (~714 meV) at ~709 meV. The intensity in this peak increased dramatically upon lowering the temperature, with a substantial increase within just a tenth of a degree, an observation suggestive of a phase transition. I reproduce the luminescence spectrum from this paper by T.K. Lo showing the free exciton and the electron-hole droplet peaks, because as mentioned, the Soviet papers are difficult to find online.

EHD-Lo.JPG

From my description so far, the most pressing questions remaining are: (1) why is there an increase in the photoconductivity due to the presence of droplets? and (2) is there better evidence for the droplet than just the luminescence peak? Because free excitons are also known to form biexcitons (i.e. excitonic molecules), the peak may easily interpreted as evidence of biexcitons instead of an electron-hole droplet, and this was a point of much contention in the early days of studying the electron-hole droplet (see the Aside below).

Let me answer the second question first, since the answer is a little simpler. The most conclusive evidence (besides the excellent agreement between theory and experiment) was literally pictures of the droplet! Because the electrons and holes within the droplet recombine, they emit the characteristic radiation shown in the luminescence spectrum above centered at ~709 meV. This is in the infrared region and J.P. Wolfe and collaborators were actually able to take pictures of the droplets in germanium (~ 4 microns in diameter) with an infrared-sensitive camera. Below is a picture of the droplet cloud — notice how the droplet cloud is actually anisotropic, which is due to the crystal symmetry and the fact that phonons can propel the electron-hole liquid!

Pic_EHD.JPG

The first question is a little tougher to answer, but it can be accomplished with a qualitative description. When the excitons condense into the liquid, the density of “excitons” is much higher in this region. In fact, the inter-exciton distance is smaller than the distance between the electron and hole in the exciton gas. Therefore, it is not appropriate to refer to a specific electron as bound to a hole at all in the droplet. The electrons and holes are free to move independently. Naively, one can rationalize this because at such high densities, the exchange interaction becomes strong so that electrons and holes can easily switch partners with other electrons and holes respectively. Hence, the electron-hole liquid is actually a multi-component degenerate plasma, similar to a Fermi liquid, and it even has a Fermi energy which is on the order of 6 meV. Hence, the electron-hole droplet is metallic!

So why do the excitons form droplets at all? This is a question of kinetics and has to do with a delicate balance between evaporation, surface tension, electron-hole recombination and the probability of an exciton in the surrounding gas being absorbed by the droplet. Keldysh’s article, linked above, and the references therein are excellent for the details on this point.

In light of the recent discovery that bismuth (also a compensated electron-hole liquid!) was recently found to be superconducting at ~530 microKelvin, one may ask whether it is possible that electron-hole droplets can also become superconducting at similar or lower temperatures. From my brief searches online it doesn’t seem like this question has been seriously asked in the theoretical literature, and it would be an interesting route towards non-equilibrium superconductivity.

Just a couple years ago, a group also reported the existence of small droplet quanta in GaAs, demonstrating that research on this topic is still alive. To my knowledge, electron-hole drops have thus far not been observed in single-layer transition metal dichalcogenide semiconductors, which may present an interesting route to studying dimensional effects on the electron-hole droplet. However, this may be challenging since most of these materials are direct-gap semiconductors.

Aside: Sadly, it seems like evidence for the electron-hole droplet was actually discovered at Bell Labs by J.R. Haynes in 1966 in this paper before the 1968 Soviet paper, unbeknownst to the author. Haynes attributed his observation to the excitonic molecule (or biexciton), which he, it turns out, didn’t have the statistics to observe. Later experiments confirmed that it indeed was the electron-hole droplet that he had observed. Strangely, Haynes’ paper is still cited in the present time relatively frequently in the context of biexcitons, since he provided quite a nice analysis of his results! Also, it so happened that Haynes died after his paper was submitted and never found out that he had actually discovered the electron-hole droplet.

Landau Theory and the Ginzburg Criterion

The Landau theory of second order phase transitions has probably been one of the most influential theories in all of condensed matter. It classifies phases by defining an order parameter — something that shows up only below the transition temperature, such as the magnetization in a paramagnetic to ferromagnetic phase transition. Landau theory has framed the way physicists think about equilibrium phases of matter, i.e. in terms of broken symmetries. Much current research is focused on transitions to phases of matter that possess a topological index, and a major research question is how to think about these phases which exist outside the Landau paradigm.

Despite its far-reaching influence, Landau theory actually doesn’t work quantitatively in most cases near a continuous phase transition. By this, I mean that it fails to predict the correct critical exponents. This is because Landau theory implicitly assumes that all the particles interact in some kind of average way and does not adequately take into account the fluctuations near a phase transition. Quite amazingly, Landau theory itself predicts that it is going to fail near a phase transition in many situations!

Let me give an example of its failure before discussing how it predicts its own demise. Landau theory predicts that the specific heat should exhibit a discontinuity like so at a phase transition:

specificheatlandau

However, if one examines the specific heat anomaly in liquid helium-4, for example, it looks more like a divergence as seen below:

lambda_transition

So it clearly doesn’t predict the right critical exponent in that case. The Ginzburg criterion tells us how close to the transition temperature Landau theory will fail. The Ginzburg argument essentially goes like so: since Landau theory neglects fluctuations, we can see how accurate Landau theory is going to be by calculating the ratio of the fluctuations to the order parameter:

E_R = |G(R)|/\eta^2

where E_R is the error in Landau theory, |G(R)| quantifies the fluctuations and \eta is the order parameter. Basically, if the error is small, i.e. E_R << 1, then Landau theory will work. However, if it approaches \sim 1, Landau theory begins to fail. One can actually calculate both the order parameter and the fluctuation region (quantified by the two-point correlation function) within Landau theory itself and therefore use Landau theory to calculate whether or not it will fail.

If one does carry out the calculation, one gets that Landau theory will work when:

t^{(4-d)/2} >> k_B/\Delta C \xi(1)^d  \equiv t_{L}^{(4-d)/2}

where t is the reduced temperature, d is the dimension, \xi(1) is the dimensionless mean-field correlation length at T = 2T_C (extrapolated from Landau theory) and \Delta C/k_B is the change in specific heat in units of k_B, which is usually one per degree of freedom. In words, the formula essentially counts the number of degrees of freedom in a volume defined by  \xi(1)^d. If the number of degrees of freedom is large, then Landau theory, which averages the interactions from many particles, works well.

So that was a little bit of a mouthful, but the important thing is that these quantities can be estimated quite well for many phases of matter. For instance, in liquid helium-4, the particle interactions are very short-ranged because the helium atom is closed-shell (this is what enables helium to remain a liquid all the way down to zero temperatures at ambient conditions in the first place). Therefore, we can assume that \xi(1) \sim 1\textrm{\AA}, and hence t_L \sim 1 and deviations from Landau theory can be easily observed in experiment close to the transition temperature.

Despite the qualitative similarities between superfluid helium-4 and superconductivity, a topic I have addressed in the past, Landau theory works much better for superconductors. We can also use the Ginzburg criterion in this case to calculate how close to the transition temperature one has to be in order to observe deviations from Landau theory. In fact, the question as to why Ginzburg-Landau theory works so well for BCS superconductors is what awakened me to these issues in the first place. Anyway, we assume that \xi(1) is on the order of the Cooper pair size, which for BCS superconductors is on the order of 1000 \textrm{\AA}. There are about 10^8 particles in this volume and correspondingly, t_L \sim 10^{-16} and Landau theory fails so close to the transition temperature that this region is inaccessible to experiment. Landau theory is therefore considered to work well in this case.

For high-Tc superconductors, the Cooper pair size is of order 10\textrm{\AA} and therefore deviations from Landau theory can be observed in experiment. The last thing to note about these formulas and approximations is that two parameters determine whether Landau theory works in practice: the number of dimensions and the range of interactions.

*Much of this post has been unabashedly pilfered from N. Goldenfeld’s book Lectures on Phase Transitions and the Renormalization Group, which I heartily recommend for further discussion of these topics.

Strontium Titanate – A Historical Tour

Like most ugly haircuts, materials tend to go in and out of style over time. Strontium titanate (SrTiO3), commonly referred to as STO, has, since its discovery, been somewhat timeless. And this is not just because it is often used as a substitute for diamonds. What I mean is that studying STO rarely seems to go out of style and the material always appears to have some surprises in store.

STO was first synthesized in the 1950s, before it was discovered naturally in Siberia. It didn’t take long for research on this material to take off. One of the first surprising results that STO had in store was that it became superconducting when reduced (electron-doped). This is not remarkable in and of itself, but this study and other follow-up ones showed that superconductivity can occur with a carrier density of only ~5\times 10^{17} cm^{-3}.

This is surprising in light of BCS theory, where the Fermi energy is assumed to be much greater than the Debye frequency — which is clearly not the case here. There have been claims in the literature suggesting that the superconductivity may be plasmon-induced, since the plasma frequency is in the phonon energy regime. L. Gorkov recently put a paper up on the arXiv discussing the mechanism problem in STO.

Soon after the initial work on superconductivity in doped STO, Shirane, Yamada and others began studying pure STO in light of the predicted “soft mode” theory of structural phase transitions put forth by W. Cochran and others. Because of an anti-ferroelectric structural phase transition at ~110K (depicted below), they we able to observe a corresponding soft phonon associated with this transition at the Brillouin zone boundary (shown below, taken from this paper). These results had vast implications for how we understand structural phase transitions today, when it is almost always assumed that a phonon softens at the transition temperature through a continuous structural phase transition.

Many materials similar to STO, such as BaTiO3 and PbTiO3, which also have a perovskite crystal structure motif, undergo a phase transition to a ferroelectric state at low (or not so low) temperatures. The transition to the ferroelectric state is accompanied by a diverging dielectric constant (and dielectric susceptibility) much in the way that the magnetic susceptibility diverges in the transition from a paramagnetic to a ferromagnetic state. In 1978, Muller (of Bednorz and Muller fame) and Burkard reported that at low temperature, the dielectric constant begins its ascent towards divergence, but then saturates at around 4K (the data is shown in the top panel below). Ferroelectricity is associated with a zone-center softening of a transverse phonon, and in the case of STO, this process begins, but doesn’t quite get there, as shown schematically in the image below (and you can see this in the data by Shirane and Yamada above as well).

quantumparaelectricity_signatures

Taken from Wikipedia

The saturation of the large dielectric constant and the not-quite-softening of the zone center phonon has led authors to refer to STO as a quantum paraelectric (i.e. because of the zero-point motion of the transverse optical zone-center phonon, the material doesn’t gain enough energy to undergo the ferroelectric transition). As recently as 2004, however, it was reported that one can induce ferroelectricity in STO films at room temperature by straining the film.

In recent times, STO has found itself as a common substrate material due to processes that can make it atomically flat. While this may not sound so exciting, this has had vast implications for the physics of thin films and interfaces. Firstly, this property has enabled researchers to grow high-quality thin films of cuprate superconductors using molecular beam epitaxy, which was a big challenge in the 1990’s. And even more recently, this has led to the discovery of a two-dimensional electron gas, superconductivity and ferromagnetism at the LAO/STO interface, a startling finding due to the fact that both materials are electrically insulating. Also alarmingly, when FeSe (a superconductor at around 7K) is grown as a monolayer film on STO, its transition temperature is boosted to around 100K (though the precise transition temperature in subsequent experiments is disputed but still high!). This has led to the idea that the FeSe somehow “borrows the pairing glue” from the underlying substrate.

STO is a gem of a material in many ways. I doubt that we are done with its surprises.

Wannier-Stark Ladder, Wavefunction Localization and Bloch Oscillations

Most people who study solid state physics are told at some point that in a totally pure sample where there is no scattering, one should observe an AC response to a DC electric field, with oscillations at the Bloch frequency (\omega_B). These are the so-called Bloch oscillations, which were predicted by C. Zener in this paper.

However, the actual observation of Bloch oscillations is not as simple as the textbooks would make it seem. There is an excellent Physics Today article by E. Mendez and G. Bastard that outline some of the challenges associated with observing Bloch oscillations (which was written while this paper was being published!). Since the textbook treatments often use semi-classical equations of motion to demonstrate the existence of Bloch oscillations in a periodic potential, they implicitly assume transport of an electron wave-packet. To generate this wave-packet is non-trivial in a solid.

In fact, if one undertakes a full quantum mechanical treatment of electrons in a periodic potential under the influence of an electric field, one arrives at the Wannier-Stark ladder, which shows that an electric field can localize electrons! It is this ladder and the corresponding localization which is key to observing Bloch oscillations.

Let me use the two-well potential to give you a picture of how this localization might occur. Imagine symmetric potential wells, where the lowest energy eigenstates look like so (where S and A label the symmetric and anti-symmetric states):

Now, imagine that I start to make the wells a little asymmetric. What happens in this case? Well, it turns out that that the electrons start to localize in the following way (for the formerly symmetric and anti-symmetric states):

G. Wannier was able to solve the Schrodinger equation with an applied electric field in a periodic potential in full and showed that the eigenstates of the problem form a Stark ladder. This means that the eigenstates are of identical functional form from quantum well to quantum well (unlike in the double-well shown above) and the energies of the eigenstates are spaced apart by \Delta E=\hbar \omega_B! The potential is shown schematically below. It is also shown that as the potential wells slant more and more (i.e. with larger electric fields), the wavefunctions become more localized (the image is taken from here (pdf!)):

screenshot-from-2016-12-01-222719

A nice numerical solution from the same document shows the wavefunctions for a periodic potential well profile with a strong electric field, exhibiting a strong wavefunction localization. Notice that the wavefunctions are of identical form from well to well.

StarkLadder.png

What can be seen in this solution is that the stationary states are split by \hbar \omega_B, but much like the quantum harmonic oscillator (where the levels are split by \hbar \omega), nothing is actually oscillating until one has a wavepacket (or a linear superposition of eigenstates). Therefore, the Bloch oscillations cannot be observed in the ground state (which includes the the applied electric field) — one must first generate a wavepacket in the solid.

In the landmark paper that finally announced the existence of Bloch oscillations, Waschke et. al. generated a wavepacket in a GaAs-GaAlAs superlattice using a laser pulse. The pulse was incident on a sample with an applied electric field along the superlattice direction, and they were able to observe radiation emitted from the sample due to the Bloch oscillations. I should mention that superlattices must be used to observe the Wannier-Stark ladder and Bloch oscillations because \omega_B, which scales with the width of the quantum well, needs to be fast enough that the electrons don’t scatter from impurities and phonons. Here is the famous plot from the aforementioned paper showing that the frequency of the emitted radiation from the Bloch oscillations can be tuned using an electric field:

PRLBlochOscillations.png

This is a pretty remarkable experiment, one of those which took 60 years from its first proposal to finally be observed.

Coupled and Synchronized Metronomes

A couple years ago, I saw P. Littlewood give a colloquium on exciton-polariton condensation. To introduce the idea, he performed a little experiment, a variation of an experiment first performed and published by Christiaan Huygens. Although he performed it with only two metronomes, below is a video of the same experiment performed with 32 metronomes.

A very important ingredient in getting this to work is the suspended foam underneath the metronomes. In effect, the foam is a field that couples the oscillators.